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Summary

During the first reporting period research has concentrated on finishing the modeling
work required for a representative model of a scramjet propulsion system for hypersonic

. ‘vehicles. An existing hypersonic propulsion code has been adjusted to the Winged-Cone

Configuration used in this study. In this process the complete force and moment calcula-
tion has been revised. The advantageous feature of the code to account for angle of attack
variations was then used to compute the thrust, lift and pitching moment contributions

* of the propulsion system not only for various Mach numbers and fuel equivalence ratios,

" but also for different angles of attack.



1 Introduction

The objective of this research is to address the issues associated with the design of ro-
bust integrated flight control systems for future hypersonic vehicles with airbreathing
‘propulsion systems. It is anticipated that such vehicles will exhibit significant interac-
tions between rigid body (airframe) dynamics, structural dynamics and engine dynamics.
The uncertainty in the initial dynamic models developed for these vehicles will also be
high. The main reason that highly interactive uncertain dynamics are to be expected is
that scramjet engines will be the primary source of propulsion at hypervelocity speeds.
Wind-tunnel testing as a result will be limited, and it will be necessary to gain experi-
ence in actual flight testing of such vehicles. This means that initial flight control system
design efforts will rely more heavily on theoretical and computer based models, than has
been the case for subsonic and supersonic aircraft. Also, propulsion system sensitivity to
angle of attack variations will lead to highly interactive dynamics.

In this study, the current major research issues from a flight control viewpoint are: (1) the
development of models that are representative of the interactive dynamics that can occur
in such vehicles, (2) the development of representative uncertainty models for these dy-
namics and (3) the development of practical approaches to designing multivariable flight
control systems that guarantee adequate performance in the presence of uncertainty. The
research done during the first reporting period has been focussing on item (1).

The hypersonic vehicle model described in [1] neglects the effects of angle of attack vari-
ations on propulsion system performance. For long, slender bodies with a considerable
amount of the compression of the flow going through the engine taking place on the
forebody, this assumption may not necessarily be valid for the entire flight regime. Fly-
ing under an angle of attack, an axisymmetric vehicle with engine modules wrapped’ all
around the body experiences greater compression on the underside than on the upperside.
This results in changes in thrust vector magnitude and direction and therefore in flight
behavior of the vehicle.

To investigate the angle of attack sensitivity of the propulsion system and the impact
on vehicle performance the HYTHRUST code described in [2] is used. The code as it
is presently employed evaluates the thrust, lift, and pitching moment contribution of a
propulsion unit for various Mach numbers, equivalence ratios, and angles of attack. The
thrust specific impulse is also computed.



2 Current Research Results

2.1 Vehicle Description

As mentioned above, the Winged-Cone Configuration described in [1] is used in this study.
Main characteristics of this vehicle are an axisymmetric conical forebody, a cylindrical en-
gine nacelle section with engine modules all around the body, and a cone frustrum engine
nozzle section.

The size of an individual engine module was based on information from an input file for
the 'SRGULL’ program (courtesy of J.D. McMinn, NASA LaRC) and have been modified
in order to meet certain requirements. These modifications consisted of reducing the
wedge angle in the inlet in order to avoid subsonic flow inside the scramjet engine at low
Mach numbers, and reducing the height of an engine module to prevent the bowshock
from entering the inlet at high Mach numbers and angles of attack. Also, the outer
shape was somewhat simplified to achieve a better implementation into the code (e.g.
the streamtubes as they are currently defined do not account for expansion in a vertical
direction, so this kind of shape was avoided). According to the given width of the inlet a
total of 32 modules are attached to the vehicle. One of the modules is shown in fig. 1.
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Figure 1: Engine module as used in HYTHRUST, all measurements in ft.



2.2 Determination of Forces and Moments

The calculation of the forces and moments created by the propulsion system has been
revised entirely compared to the version given in [2]. In what follows, a brief outline is
given describing how the relevant forces and moments are computed.

The control volume consists of (see fig. 2)

1. inlet entrance plane

2. engine surface at body
3. engine exit plane

4. engine surface at cowl

5. aftbody surface.

Figure 2: Control volume for force computation, vectors indicate outward normal.

The coordinate system chosen is a two-dimensional windframe system with the x-axis
positive rearward, the y-axis positive downward, and the pitching moment positive nose
up. This convention was chosen because the vehicle geometry is already given in this
system. It is distinguished between two different types of forces: forces created by mo-
mentum flux, F,,, and forces created by pressure, Fp, both resolved in directions of the
coordinates. The pitching moments caused by these forces are M,, and M,, it is again



distinguished if they are caused by an x- or y-force (Mzm, Mym, Mzp, Myp).

1. Inlet Entrance Plane

Since for this configuration the streamtubes are parallel to the body x-axis the outward
normal is 7i; = (— cos @, — sin @), where a is the angle of attack. The incoming flow from
the forebody has the velocity @, = v;(cos 6;,sin ;). Using the momentum equation and
the expression

’Uld/i'l - 61ﬁ1dA1
= —v,cos(f; —a)dA, (1)

the forces caused by the momentum flux for each streamtube are

dFp = pty(ThdA))
= —wvy(cos fy,sin ;) driny (2)

where

dmy = pvy cos(6) — a)dA;. (3)
The forces caused by pressure are

dﬁpl = pld/-fl
= —pi{cosa,sina)dA;. (4)

These force increments have to be summed over all streamtubes. Additionally, they create
moments around a moment reference center which is assumed for this calculation to be
at the origin of the coordinate system at the tip of the vehicle. The moments are

dM = FxdF
= (z,y) x (dF;,dFy)
= (0,0,zdF, — ydF;) (5)

So the moments caused by x- and y-forces are

dM, = -ydF, (6)
dM, = zdF,, (7)



respectively. Using the expressions above, the resulting moment increments are

dM;m, = yvycosfdm,

- dMyn1 = —zvysinb, dmy
dM;,1 = ypicosadA,
dMy,1 = —zpisinadA;.
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2. Engine Surface at Body
Since there is no flow across this border of the control volume, only pressure forces are
relevant. The outward normal is @i, = (sin a, — cos ), so the forces acting on this surface
are

dﬁpz = pa(sin a, — cos a) dA,. (12)
Therefore, the moments are computed as

dM,,; = —yp:sinadA, (13)
dM,,, = —zpycosadA;. (14)

3. Engine Ezit Plane

For the engine exhaust, the outcoming flow is naturally parallel to the streamtubes and

therefore to the outward normal 73 = (cos a, sin ) which leads to the simple expression
63 dA's = U3 dAg (15)

The forces caused by the momentum flux out of the engine are

dF,; = v3(cos a,sin a) dmg (16)

where
dTh3 = pu3 dA3 (17)

The forces caused by pressure are
dﬁpg = ps(cos a,sin o) dAs. (18)

The moments can be calculated similarly to the ones at the inlet plane using equations
(6) and (7) and the expressions for the forces given above.



4. Engine Surface at Cowl
Like the surface at the body, only pressure forces are relevant. Using the outward normal
fiqg = (—sin @, cos a), the forces and moments are

dﬁp,; = p4(—sina,cos a)dA, (19)
de = ps(ysina,zcos a)dA,. (20)

5. Aftbody Surface

Again, the aftbody is only affected by pressure forces. Denoting the aftbody angle
with A measured in the windframe coordinate system, the outward normal is 715 =
(—sin B, — cos ) and the forces and moments are

NN
[
~

dF,s = ps(—sinf,— cosf)dAs (
dM,s = ps(ysin B, —z cos ) dAs;. (;

Total Forces and Moments

When summing the forces and moments over the complete engine module it has to be
considered that the difference in momentum and pressure between the inlet and engine
exit plane results in a force acting on the fluid. Therefore, the reaction force has to be
used when forces acting on the vehicle are to be determined. The pressure forces on the
other surfaces act directly on the vehicle. The total forces are then given by

ﬁtot = '—(ﬁml +ﬁpl+ﬁm3+ﬁp3)+ﬁp2+ﬁp4+F‘p5' (23)

Likewise, the total moments are
My = —(Mpy + My 4 Mos + My3) + My + Mys + M5 (24)
So far, the moments were calculated corresponding to a moment reference center at the

origin of the given coordinate system. For the following calculation of the propulsion
system database they were transfered to the moment reference center given in [1].

2.3 Propulsion System Database
The HYTHRUST code computes propulsion data for one engine module. The Winged-

Cone Configuration utilizes 32 modules around the whole body. For an axisymmetric
body at zero angle of attack all modules work under the same conditions and yield an
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equal amount of thrust, lift, and pitching moment. This changes when the vehicle is flying
at non-zero angles of attack. Compression will be greatest on the underside and gradu-
ally decrease when going around the sidewalls to the top. Crossflow components will also
influence the flow field considerably and alter the flow entering the sidewall engine inlets.

Since the HYTHRUST code uses an axisymmetric two-dimensional Method of Charac-
teristics procedure on the forebody, this crossflow cannot be tracked and no answer can
be given on how the forces will vary for the different engine modules on the sidewalls.
Implementing a three-dimensional method for the forebody would have been too time-
consuming so an attempt to estimate the force variation along the sidewalls based on
experimental results given in [3] and [4] was made. The windtunnel tests described in
these papers yielded information about the circumferential pressure distribution around
cones at angles of attack at supersonic speeds. Data for the pressure coefficient cp at the
the surface for azimuthal angles of 0° (top), 90° and 180° (bottom) was given and an effort
was made to reproduce these data with the HY THRUST code. The pressure coefficients
for top and bottom showed good agreement. However, for an azimuthal angle of 90° our
modeling approach resulted in exactly the opposite trend from that given in the papers.
The modeling consisted of running the code with free stream conditions vy, = v, cosa
and introducing an assumed crossflow component vy, sin o at the 90° inlet. Beyond this
problem, additional work would have been required to relate the pressure distribution on
the forebody to the forces and moments created by the propulsion units.

Since no further information about a reasonably good yet simple estimation could be
found a linear approach was chosen. The engine data for the whole vehicle are computed
by evaluating the uppermost and lowermost module, since negligible crossflow will occur
there, and linearly interpolating for the engine modules in between.

With the propulsion system forces and moments of the vehicle determined by this proce-
dure, the thrust coefficient as defined in [1] is

_ thrust

cr = (1] (25)
doo
where the dynamic pressure is
1
Joo = §poov§, (26)
1 Lod
The lift coefficient is Life
i
cL = — 28
L= 5. [-] (28)



and the pitching moment coeflicient

pitching moment
M = —
qooSrefc

[-]. (29)

The reference area S,.s; and reference length ¢ are given in [1]. The fuel specific impulse
I, is averaged between the two values for the top and bottom engine module.

The propulsion system database is computed for flight conditions at an altitude of 100000
ft (US Standard Atmosphere 1976) and the following conditions:

Mach numbers: M=234,6,8, 10,15, 20, 25
fuel equivalence ratios: ¢ = 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0
angles of attack: a = 0° 1°, 2°, 3°, 4° .

The angle of attack variation is restricted to the condition that there has to be a compres-
sion on the forebody for the HYTHRUST code to be applicable. Since the forebody cone
half angle is 5°, the 'ramp angle’ for an angle of attack of a = 4° is only 1° for the flow
on the uppermost engine module which translates into a very weak compression. Since
the Winged-Cone Configuration is axisymmetric, the values for negative angles of attack
correspond to the positive values where lift and pitching moment reverse sign.

For the zero angle of attack-case data for the thrust coeflicient ¢z and the fuel specific
impulse I,, already exist [1]. Here, an entirely different approach was used to get these
data, hence they could not be reproduced by the HYTHRUST code. To overcome this
problem the ’percentage change’ is measured when deviating from a = 0° and this change
is applied on the existing Winged-Cone data for o = 0° to get the angle of attack varia-
tion. Using HYTHRUST data, the factor

_ CT,H((X) - CT,H(Q = 00)
kr(a) = o = 0) (30)

is determined and applied on the Winged-Cone data:
erwel(a) = (1 + kr(a)) crwe(a = 0°) (31)

The fuel specific impulse is adjusted similarly whereas lift and pitching moment coeffi-
cients are not changed.



2.4 Results

To get an impression of how close the HYTHRUST code comes in reproducing the data
of the Winged-Cone Configuration, a comparison of the thrust coefficients and specific
impulses for zero angle of attack and four different Mach numbers representing the whole
flight regime is shown in figs. 3, 4, 5 and 6. Phi is the fuel equivalence ratio, ¢y is in ft?
and I,, is in seconds.

The HYTHRUST data for M = 2 are considerably lower than the Winged-Cone data
which can be explained by the fact that in HYTHRUST a pure scramjet engine is mod-
eled. This type of engine generally does not become effective until the speed increases to
Mach numbers above five. This trend can be seen for M = 8 in fig. 4 and for A =15 in
fig. 5 where the curves for ¢y and I,, agree more closely with the Langley Winged-Cone
model. For M = 25 (fig. 6) HYTHRUST yields higher thrust than the Winged-Cone
configuration which is due to the fact that in the HYTHRUST code no boundary layer
effects or propulsive drag are considered.

The subsequent figures 7 - 26 give an idea of how vehicle performance is affected by the
propulsion system when the angle of attack is changed. For determining the coefficients,
the following convention is used: thrust is positive forward and lift is positive upward,
both expressed in a windframe system. The pitching moment is positive nose up. As
mentioned above, for cr and I,, the variations due to the angle of attack changes are
appplied on the given Winged-Cone data for @ = 0° in accordance with equations 30 and
31, whereas the lift and pitching moment coefficients are as given by HYTHRUST. The
complete propulsion system database for all Mach numbers, fuel equivalence ratios, and
angles of attack is given in the appendix.

Thrust and fuel specific impulse are nearly insensitive to changes in angles of attack. For
lower Mach numbers both ¢ and I, slightly decrease for increasing angle of attack, and
for higher Mach numbers they may decrease as well as increase marginally depending on
the fuel equivalence ratio used.

The lift added to the vehicle by the propulsion system increases for increasing angle of
attack. The magnitude of the lift coefficient first increases, then decreases again when the
Mach number is varied from 2 to 25. It can be seen especially for M = 15 (fig. 20) that
there is a certain 'kink’ or even a ’jump’ for M = 25 (fig. 24) in the ¢z-curve for small
equivalence ratios. This is the result of a simplified modeling of the combustion process
as a 'simple’ Rayleigh line heat addition. It is assumed that when reaching a certain
maximum temperature in the combustion chamber no more fuel is burned and thrust is

10



Mach | cpg, for basic vehicle | cp, for prop. system
=05 p=1
4 -0.00175 -0.000119 | -0.000091
6 -0.00100 -0.000451 | -0.000334
10 0.00050 -0.000550 | -0.000515
15 0.00100 -0.000535 | -0.000401
20 0.00110 -0.000342 | -0.000063
25 0.00110 -0.000174 | 0.000213

Table 1: cpr, comparison for o = 1°

increased by injecting excessive hydrogen. The transition into this fuel-rich environment
causes the described effect which is also visible in the graphs of the pitching moment.

The greatest impact on vehicle performance by the propulsion system is in the pitch-
ing moment. For small Mach numbers the pitching moment contribution is throughout
positive (nose up) (see fig. 9) and increases linearly with fuel equivalence ratio. With
increasing speed, cps becomes negative first for small, and then for all equivalence ratios
(see figs. 13 and 17). This trend is reversed when the Mach number is increased further
(fig. 21) and for M = 25 cps is positive again for almost all equivalence ratios (fig. 25).
Furthermore, the contribution of the propulsion system to the vehicle pitching moment
due to angle of attack variations shows a stabilizing tendency. Table 1 gives a comparison
of the pitching moment sensitivity to angle of attack changes

e = % (32)

for the basic vehicle (derived from fig. 21 in [1]) and for the propulsion system for the
equivalence ratios ¢ = 0.5 and ¢ = 1 evaluated at @ = 1°. It can be seen that for Mach
numbers around 10 the influence of the propulsion system reaches the same magnitude as
the basic vehicle’s influence but is reversed in sign and therefore has a stabilizing influence.
This effect starts at around M=6 and can still be observed at M=15.

2.5 Conclusions
The investigation shows that the impact of propulsive variations due to angle of attack
changes on vehicle performance is not negligible for typical hypersonic vehicles. In this

case, it is not so much that thrust is affected but that the pitching moment displays a
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significant sensitivity for this type of long and slender vehicle. Even small variations in
the forebody conditions can result in considerable changes in the pitching moment which
make the vehicle behavior highly unpredictable. This indicates the presence of uncer-
tainty for further control studies.

3 Future Research

During the next reporting period research will concentrate on developing the linear mod-
els of the aircraft using the created propulsion sytem model. In this effort we will rely on
the results provided by NASA using the POST program as well as investigate the possi-
bility of employing a different code performing the same or a similar task. Furthermore,
the uncertainty modeling will be carried out and a paper for the 1993 ATAA Guidance,
Navigation and Controls conference will be prepared that will illustrate a control system
design based on a robust performance specification.

12



Thrust Comparison, M = 2
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Figure 3: Comparison HYTHRUST and Winged Cone data, M = 2
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Thrust Comparison, M = 8
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Figure 4: Comparison HYTHRUST and Winged Cone data, M = 8
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Thrust Comparison, M = 15
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Thrust Comparison, M = 25
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Appendix

A.1 Input Data File HYTH.DAT

The input data file used by the HYTHRUST code specifying freestream properties as well
as geometrical and combustion data is given below. The expressions on the right hand
side of the file represent the names of the variables the values of which are given on the
left hand side.

8 408.6 23.198 0. AMinf Tinf Pinf alpha
1.4 1716. Gamma  Rgas
3 NPF
0. 0. 0. XF(1) YF(1) CF(1)
73.0 6.39 .15658 XF(2) YF(2) CF(2)
150. 13.122  .0762 XF(NPF) YF(NPF) CF(NPF)
FALSE Lout
2.636 4.5 4.5 H XW1  XW2
3. -3. -3. 3, D1 DiST D2  D2ST
150. 14.95 159. 14.95 XCL YCL XEX YEX
5. 0 0. XCC NSTRUT ALST
1.38 1716. 1.2E9 .96 .0292 G2 RG2 QR EtaB FCRIT
.5 0. ER AM
3 NPA
159. 13.122 0.0762 XA(1) YA(1) CA(1)
180. 9.796 0.102086 XA(2) YA(2) CA(2)
200. 6.63 0.15082 XA(NPA) YA(NPA) CA(NPA)
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A.2 Propulsion database

Here, the complete database for the propulsion system’s thrust, lift, and pitching moment
contribution including fuel specific impulse data is given for all combinations of Mach
number, fuel eqivalence ratio and angle of attack. The expressions in the first block rep-
resent the given variables and explain the structure of the database.

M equ. ratio
alpha ct cl cm Isp
alpha ct cl cm Isp
alpha  ....... ..o
2.0 0.25
0.0 205.042 0.000E+00 0.000E+00 5672.40
1.0 204.627 0.116E-02 0.640E-04 5668.14
2.0 203.439 0.232E-02 0.124E-03 5658.67
3.0 201.568 0.347E-02 0.176E-03 5644.48
4.0 198.800 0.467E-02 0.186E-03 5623.08
2.0 0.50
0.0 315.572  0.000E+00 0.000E+00  4365.00
1.0 314.950 0.116E-02 0.767E-04 4361.78
2.0 313.1659 0.232E-02 0.149E-03 4354.61
3.0 310.363 0.348E-02 0.214E-03 4343.85
4.0 306.212 0.469E-02 0.237E-03  4327.63
2.0 0.75
0.0 391.292 0.000E+00 0.000E+00  3608.30
1.0 390.541 0.117E-02 0.893E-04 3605.68
2.0 388.387 0.233E-02 0.175E-03  3599.85
3.0 384.996 0.350E-02 0.252E-03  3591.07
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